Alexis Komor and Nicole Gaudelli developed based editing when they were postdoc in David Liu’s laboratory at Harvard. Credit: The CRISPR Journal
The first Investigational New Drug (IND) application for base-editing technology has been cleared by the Food and Drug Administration. BEAM-101, developed by Beam Therapeutics, is an ex vivo base-editing product candidate, meaning that it uses a modified form of CRISPR capable of making single base changes without double-stranded DNA cleavage.
Emanuele and Erika Guarini are brother and sister. They were treated for thalassemia respectively in November 2020 and August 2021 by the team of Franco Locatelli at Bambin Gesù hospital in Rome. Before the CRISPR-based treatment, they needed a blood transfusion every 15-20 days (source La Repubblica).
A multi-disciplinary panel of 18 experts from all over the world, a two years long consultation, over 150 pages. The much-awaited report of the World Health Organization on human genome editing was delivered on July 12 and is divided into three parts: A framework for governance, Recommendations, and Position Paper. While not legally binding, it is expected to influence both governments and the scientific community, by offering a roadmap based on widely shared ethical principles and usable policy tools.
The Somatic Cell Genome Editing (SCGE) Consortium is working to accelerate the development of better methods of editing. Seventy-two principal investigators from 38 institutions are pursuing 45 distinct but well-integrated projects, funded by the US National Institutes of Health with US$190 million over 6 years. A perspective published in Nature details their plans:
“New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled—along with validated datasets—into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit—and the knowledge generated by its applications—as a means to accelerate the clinical development of new therapies for a wide range of conditions”.
A paper published in Nature by CRISPR innovator David Liu and a giant in medical genetics, Francis Collins, raises great hopes for treating a rare, devastating pediatric disease causing premature-aging (Hutchinson-Gilford progeria syndrome). “The outcome is incredible,” according to gene-therapy researcher Guangping Gao. “Dance on the lab bench” amazing, according to editing pioneer Fyodor Urnov. Let’s be clear: the CRISPR variant called a base-editor has helped only progeria mice so far, but results are beyond anyone’s wildest expectations. One injection is enough to fix the single-letter mutation in several tissues, doubling mice’s lifespan. To learn more, see David Liu’s tweets and the NIH Director’s Blog.
The Nobel Prize for CRISPR is one of the most exciting ever assigned in chemistry and one of the most celebrated in the media, for reasons related to the invention and the inventors alike. On the one hand, the technique is changing the practice and the image of genetic engineering. On the other hand, Jennifer Doudna and Emmanuelle Charpentier are not merely great scientists; they are a success story in cracking the glass ceiling and a symbol of the strength of collaboration.
Covid19 is affecting everyone, but it has hit the sickle cell (SCD) community particularly hard. According to STAT News the pandemic has temporarily stopped clinical trials and the introduction of new drugs, besides directly impacting SCD patients who are at high risk for severe complications from Sars-Cov2 infection and may need hospital assistance for SCD pain crises.
Another CRISPR step in the way out of congenital muscular dystrophy type 1A (MDC1A) is announced by Ronald Cohn and colleagues in Nature this week. This is still preclinical research in mice, but the indirect approach presented by the Canadian team holds great promise.