Italy to edit quality foods

spaghettiThe research institute CREA is experimenting with CRISPR to improve Italian typical products. The project called BIOTECH is funded with 6 million euros from the Italian ministry of agriculture. Wheat, tomatoes, vines, fruits and more are on the menu, as reported by me in a 6-pages feature published in Le Scienze, the national edition of Scientific American. Continue reading

Climate, biotech and biases

GMO-climate-changeCRISPR gets a mention in the latest IPCC report as a potentially useful tool to cope with climate change. However, some people believe that biotech crops are safe and that climate change is not real (let’s call them libertarian capitalists, for convenience). Many ecological activists conversely think that genetically modified plants are evil and global warming threatens life on the planet. These stances could not be more different, yet they have something in common: they are both half right and half wrong. They are both examples of “selective science denial.” Continue reading

Neutralizing cryptic mutations in plant breeding

We talk of cryptic mutations when genes are changed in a way that remains hidden until they interact with other mutations. As a result, combining beneficial traits can have negative consequences hindering agricultural production (watch this video from Cold Spring Harbor Laboratory on unexpected negative interactions). Classic breeders have been dealing with this problem for decades, but researchers from CSHL are finally working on a solution suitable for the genomic era. Zach Lippman and colleagues have studied one infamous cryptic mutation affecting a tomato variety developed by the Campbell Soup Company in the 1960s and discuss an anti-negative-interaction strategy for the future. Please see their paper in Nature Plants and watch the video below offering a cautionary tale for crop gene editing.

Plant editing gets easier with CRISPR loaded pollen

maisPollination is a natural way to deliver DNA into plant cells. So why not to use pollen as a vehicle for CRISPR machinery to start genome editing? HI Edit, as this approach is called, has been successfully tested by Syngenta in corn, Arabidopsis and wheat in the lab. Please see the paper just published in Nature Biotechnology by Timothy Kelliher et al., Jon Cohen’s piece in Science, and a quick guide to HI (haploid induction) from Current Biology. Leading wheat geneticist Cristobal Uauy of the John Innes Centre also showed high spirit, when asked for comment by email: “The possibility to genome edit any variety is revolutionary given that transformation is so difficult in many species. If I understand this correctly this would be a game changer as it would allow us to alter genes in elite cultivars.”

Developing CRISPR for developing countries

iita

Researchers from the International Institute of Tropical Agriculture in Nairobi, Kenya, are using CRISPR to inactivate the banana streak virus DNA in the genome of plantain. Their strategy, reported in Communications Biology today, paves the way for improving banana breeding and getting better varieties of this staple food crop. This project is a welcome addition to the list of CRISPR applications being considered for developing countries’ agriculture, such as maize varieties resistant to lethal necrosis and cassava resistant to brown streak disease.

 

From chili pepper to hot tomato?

this image shows jalapeño peppers (a cultivated variety of capsicum annuum) credit emmanuel rezende naves

Chili peppers have happily entered our kitchens with their capsaicinoid content, since Cristoforo Colombo brought then back from Central America. Capsicum species however are labour-intensive and difficult to grow. They are also notoriously recalcitrant to biotechnological intervention. Tomatoes are much handier in comparison. The Capsicum and Solanum clades split at least 19 Mya ago but comparative genomics has revealed that tomatoes retain all the necessary genes for pungency. Why not to harness CRISPR power to turn tomatoes into capsaicinoid biofactories then? Continue reading

Your CRISPR blogger tries the real thing

scuola crispr 1_2

My lab adventure in the Italian edition of Scientific American (Le Scienze)

It’s never too late to learn how to rewrite a genome. So here I am, attending this CRISPR school. Forget the do-it-yourself kits sold over the internet. I am lucky enough to take the first practical course on genome editing organized by the Italian Society of Agricultural Genetics (Siga) in Grugliasco, at the Department of Agricultural, Forestry and Food Sciences of the University of Turin. After writing a lot about CRISPR, it’s time to try the real thing. Continue reading