Everything you always wanted to know about gene drives

OLYMPUS DIGITAL CAMERAMosquito nets are not enough, vaccines are late to come, land reclamation in Africa is a challenge. But there is a new hope for defeating malaria, coming directly from the most advanced CRISPR frontier. The trick is a kind of genetic chain reaction fuelled by genetic elements called “gene drives”. Researchers are experimenting their power with the aim of crashing the number of mosquitoes responsible for Plasmodium transmission, by spreading genes that are bad for Anopheles gambiae. A gene behaving in Mendelian way has a 50% chance of being passed on from parent to offspring, but it can virtually reach 100% with a little help from a drive. Thus a gene designed to damage a harmful species can propagate within a few generations with a domino effect, until the population collapses. One of the founders of this futuristic strategy is an Italian molecular parasitologist: Andrea Crisanti, of the London Imperial College. We asked him to explain times and ways, strengths and risks of this approach. Continue reading

CRISPRing future harvests at DuPont

This slideshow requires JavaScript.

CRISPR is set to make its commercial debut in maize fields in 2020. The honor (and burden) of probing the market, as the first product developed with the revolutionary technique for genome editing, is up to a kind of corn called waxy for the appearance of its kernels. Its starch is almost entirely amylopectin and almost zero amylose. Conventional waxy varieties already available to farmers have some yield drag due to the undesirable genetic baggage introduced by breeding. Conversely, DuPont Pioneer researchers created a waxy version of their best corn without yield drag or foreign DNA by editing out a gene for an enzyme that produces amylose. Amylopectin is used for the production of goods such as paper adhesives and food thickeners. What remains after its extraction is a protein flour that can be employed as feed. It may sound like a low-profile debut for the celebrated genome editing technology that is asked to succeed where GMOs have failed: gaining consumer confidence. But this is a deliberate strategy, as explained below by Neal Gutterson, DuPont Pioneer’s vice president of R&D. Continue reading

Gene therapy meets CRISPR

gene therapyThe aim is engaging: to treat an increasing number of diseases by correcting the underlying genetic defects. And researchers are breathing optimism at last. The San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) in Milan has already treated 58 patients (including ADA-SCID, leukodystrophy, Wiskott-Aldrich syndrome and beta-thalassemia) and the count is approaching 300 worldwide. Moreover the promise of genome editing is looming on the horizon. We discussed the present and future of the field with the SR-Tiget director Luigi Naldini, who contributed to the latest report on human genome editing published by the US National Academies of Sciences and Medicine. Continue reading

CRISPR in RNA Wonderland

doudna_crispr_wide-cb9478286d39615ed64291ea95d4cfe022596aa2-s900-c85This week our journey among leading labs takes us to meet a pioneer of gene silencing. Pino Macino contributed to the birth of RNA interference, a field awarded a Nobel prize in 2006, and teaches cell biology at Sapienza University of Rome.  He thinks CRISPR is a great leap forward in understanding the function of genes. Continue reading

Is Italy’s agriculture ready for CRISPR?

viteGenome editing seems tailored for Italian agriculture as DNA can be modified without introducing foreign sequences and without destroying the legal identity of traditional cultivars. CRISPR could help developing plants more resistant to diseases, for example, avoiding at the same time bureaucracy and public perception problems that have slowed the adoption of GMOs. The stakes are high but some hurdles stand in the way. We have interviewed  Michele Morgante, geneticist from the University of Udine and President of the Italian Society of Agricultural Genetics.    Continue reading

Is CRISPR feminine in Latin languages?

crispr acronimo

CRISPR is on the lips of every science enthusiast nowadays, but are we correctly using this acronym? How do Latin languages assimilate hitech neologisms from English? Italian, like French and Spanish, virtually lacks the neutral gender. As a result new words referring to inanimate objects is problematic for non-anglosaxon speakers when forming an agreement with articles, pronouns or adjectives. The author of this blog is Italian and uses CRISPR as a feminine noun, am I right? If so, why is “laser” masculine in Latin languages? If the two technologies could switch their gender, would it affect how they are perceived? I asked for an opinion the Accademia della Crusca, which is the leading institute in the field of research on the Italian language. They asked Anna Thornton, from L’Aquila University, to answer these questions. First of all she stresses that there are no infallible rules in grammatical gender assignment, only trends.  Continue reading