Knocking out cholesterol

Consider this scenario, depicted in Nature a few years ago. “It’s 2037, and a middle-aged person can walk into a health centre to get a vaccination against cardiovascular disease. The injection targets cells in the liver, tweaking a gene that is involved in regulating cholesterol in the blood. The simple procedure trims cholesterol levels and dramatically reduces the person’s risk of a heart attack”.

Continue reading

About chromosomal mayhem in edited embryos

Luigi Naldini, SR-Tiget

CRISPeR Frenzy asked Luigi Naldini of the San Raffaele Telethon Institute for Gene Therapy in Milan for comment on three studies published in June on the preprint server bioRxiv. The experiments were carried out independently by the groups of Kathy Niakan of the Francis Crick Institute in London, Dieter Egli of Columbia University in New York City, and Shoukhrat Mitalipov of Oregon Health & Science University in Portland. These findings heighten safety concerns about heritable genome editing (see the news item by Heidi Ledford in Nature). Below you can read Naldini’s thoughts.

Continue reading

When CARMEN met the coronavirus

Say hello to CARMEN: a massively multiplexed, Cas13-based technology for nucleic acid detection, out yesterday in Nature. Its name stands for Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids, and it allows us to test many amplified samples for the presence of many viral sequences by using miniaturized detection reactions that self-organize in a microwell array. Sars-Cov2 included.

Continue reading

CRISPR application to infectious diseases

CRISPR holds promise for the treatment of cancer and inherited disorders, as you know, but what about infectious diseases? It can do many useful things indeed, according to this review by Jeffrey Strich and Daniel Chertow, published in the Journal of Clinical Microbiology.

Continue reading

CRISPR targeting COVID-19

Alexandra East-Seletsky graphic

Hopefully, CRISPR-based diagnostics will make an early debut amid COVID-19 outbreak. But what about a CRISPR prophylactic strategy to combat coronaviruses? The proof of concept is here, in bioRxiv, but it will be deployed in the next pandemic if we are lucky. It’s called PAC-MAN, like the videogame, stands for Prophylactic Antiviral CRISPR in huMAN cells, and comes from the Stanley Qi Lab.

Continue reading

CRISPR in the news

CAR-T cell therapy meets CRISPR. See the results from the first US trial of gene editing in patients with advanced cancer, just published by Carl June and colleagues in Science, together with a perspective by Jennifer Hamilton and Jennifer Doudna and a piece of news by Jennifer Couzin-Frankel. We still don’t know if edited T cells are effective against cancer, but this Phase 1 clinical trial suggests the approach is safe and feasible.
RNA editing takes off. Take a look at the news feature by Sara Reardon in Nature. It’s a four pages introduction to ADAR, an alternative to CRISPR for flexible, reversible therapies.

George Church futures

The new coronavirus spreading in China is one more reason to hear from the multi-talented geneticist how we could make our life virus-proof with DNA recoding and other exciting stuff coming from the Church Lab.

The Leapsmag video “Defeating nature’s deadliest killers with Harvard scientist George Church”

The CRISPR Journal podcast “George Church, triple threat (reader/writer/editor)”

Modulation better than correction. A new CRISPR paradigm is emerging

ronald-cohn3
Ronald Cohn (SickKids)

Another CRISPR step in the way out of congenital muscular dystrophy type 1A (MDC1A) is announced by Ronald Cohn and colleagues in Nature this week. This is still preclinical research in mice, but the indirect approach presented by the Canadian team holds great promise.

Continue reading

CRISPR breathes new life into fetal lungs

science traslational medicine cover

Researchers from Penn Medicine and Children’s Hospital of Philadelphia have fixed a lethal mutation in the prenatal mouse models of a rare pulmonary disease. The hope is that the approach of in utero editing described in Science Translational Medicine will work for other congenital lung diseases as well.

I asked one of the corresponding authors, Edward Morrison, scientific director of the Penn’s Institute for Regenerative Medicine, to explain what they have done and what to expect next. See Q&A below. Continue reading