CRISPR breathes new life into fetal lungs

science traslational medicine cover

Researchers from Penn Medicine and Children’s Hospital of Philadelphia have fixed a lethal mutation in the prenatal mouse models of a rare pulmonary disease. The hope is that the approach of in utero editing described in Science Translational Medicine will work for other congenital lung diseases as well.

I asked one of the corresponding authors, Edward Morrison, scientific director of the Penn’s Institute for Regenerative Medicine, to explain what they have done and what to expect next. See Q&A below. Continue reading

CRISPR draws the first genomic map of cancer vulnerabilities

If you know the enemy and know yourself, you need not fear the result of a hundred battles. The military strategist Sun Tzu wrote it over two thousand years ago, but this quote could also apply to oncology research in the CRISPR era. Identifying the weak points of cancer cells is the first step to hit new molecular targets with the next generation of drugs.

The good news is that the Wellcome Sanger Institute has taken a giant leap toward this goal, drawing up a list of 600 candidate genes. The study just published in Nature by Mathew Garnett’s team comes with a twin paper by the Broad Institute, confirming the results by following an alternative approach. In a four-year tour de force of functional genomics, Sanger’s researchers used CRISPR to disrupt every gene in over 300 cancer models from 30 cancer types. From this amount of data, they developed a prioritization system which will guide big pharma’s hunt for new drugs.

CRISPRing in the womb

pregnant-2640994_960_720It’s another CRISPR first: fixing a hereditary disease in utero. Scientists from Pennsylvania University and the Children’s Hospital of Philadelphia used a base editor to rescue tyrosinemia in fetal mice. “The results of this proof-of-concept work demonstrate the possibility of efficiently performing gene editing before birth, pointing to a potential new therapeutic approach for selected congenital disorders,” Avery C. Rossidis and colleagues write in Nature MedicineContinue reading

CRISPR futures. Q&A with Jennifer Doudna

Doudna, Jennifer

Credit: Keegan Houser/UC Berkeley

Interview given to Anna Meldolesi (Corriere della sera, 15 May 2018)

The CRISPR biomedical duel between China and the US has been called “Sputnik 2.0”. Is Europe being left behind?

JD: As with any disruptive technology, there is intense competition to lead. However, unlike the space race, the CRISPR research effort is global and more collaborative. We consistently see key advances in CRISPR technology shared through scientific papers, written and read by research teams around the world. This collective approach has helped to democratize the technology. However, differing regulations across countries may impact how we ultimately translate research into real-world applications that can benefit the most number of people with the most need. Researchers in Europe have made valuable contributions to the development and application of CRISPR and will continue to play a role in establishing global standards. Continue reading

Zinc fingers grab CRISPR for once

sangamo tweetThe first patient edited “in vivo” last week is a breaking news story, and zinc finger nuclease ZFN must be credited for the accomplishment. A putatively outdated system stealing the scene from the most celebrated technique for gene editing is a bit like Carl Lewis beating Usain Bolt at the Rio Olympics. Any wonder that tweets by some biotech-enthusiasts had something of a derby atmosphere, while many inattentive readers thought it was CRISPR stuff, as lay people never heard of ZFN before. Continue reading

Everything you always wanted to know about gene drives

OLYMPUS DIGITAL CAMERAMosquito nets are not enough, vaccines are late to come, land reclamation in Africa is a challenge. But there is a new hope for defeating malaria, coming directly from the most advanced CRISPR frontier. The trick is a kind of genetic chain reaction fuelled by genetic elements called “gene drives”. Researchers are experimenting their power with the aim of crashing the number of mosquitoes responsible for Plasmodium transmission, by spreading genes that are bad for Anopheles gambiae. A gene behaving in Mendelian way has a 50% chance of being passed on from parent to offspring, but it can virtually reach 100% with a little help from a drive. Thus a gene designed to damage a harmful species can propagate within a few generations with a domino effect, until the population collapses. One of the founders of this futuristic strategy is an Italian molecular parasitologist: Andrea Crisanti, of the London Imperial College. We asked him to explain times and ways, strengths and risks of this approach. Continue reading