CRISPR tracks metastatic progression

Phylogenetic trees of tumors and metastases can reveal key features such as the clonality, timing, frequency, origins, and destinations of metastatic seeding. Each color in the image above represents a different location in the body. A very colorful tree shows a highly metastatic phenotype, where a cell’s descendants jumped many times between different tissues. A tree that is primarily one color represents a less metastatic cell. Credit Jeffrey Quinn/Whitehead Institute

CRISPR-based techniques allow the reconstruction of the “family tree” of the cells that compose an animal’s body by marking them with a pattern of deletions and insertions. This kind of barcoding has already helped trace embryo growth and organoid development and is shedding light on essential oncology questions by catching cancer in the act. Read how “Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts” in this Science paper and the news from Whitehead Institute.

CRISPR draws the first genomic map of cancer vulnerabilities

If you know the enemy and know yourself, you need not fear the result of a hundred battles. The military strategist Sun Tzu wrote it over two thousand years ago, but this quote could also apply to oncology research in the CRISPR era. Identifying the weak points of cancer cells is the first step to hit new molecular targets with the next generation of drugs.

The good news is that the Wellcome Sanger Institute has taken a giant leap toward this goal, drawing up a list of 600 candidate genes. The study just published in Nature by Mathew Garnett’s team comes with a twin paper by the Broad Institute, confirming the results by following an alternative approach. In a four-year tour de force of functional genomics, Sanger’s researchers used CRISPR to disrupt every gene in over 300 cancer models from 30 cancer types. From this amount of data, they developed a prioritization system which will guide big pharma’s hunt for new drugs.