Lights. Camera. Action. Cut!

Super cool. The best film I’ve seen in years. I’m speechless. Over 3,000 retweets and dozens of ecstatic comments, this is how Twitter has reacted to the first real-time video featuring CRISPR, posted by Hiroshi Nishimasu of the University of Tokyo. It is not an animation clip, and it truly shows the Cas9-RNA complex paparazzed while doing its molecular job. Continue reading

Zinc fingers grab CRISPR for once

sangamo tweetThe first patient edited “in vivo” last week is a breaking news story, and zinc finger nuclease ZFN must be credited for the accomplishment. A putatively outdated system stealing the scene from the most celebrated technique for gene editing is a bit like Carl Lewis beating Usain Bolt at the Rio Olympics. Any wonder that tweets by some biotech-enthusiasts had something of a derby atmosphere, while many inattentive readers thought it was CRISPR stuff, as lay people never heard of ZFN before. Continue reading

CRISPR Express: nanovectors are coming

nanoparticle MIT[1423]Suppose you have developed the winning weapon to defeat certain genetic diseases by reliably correcting pathogenic mutations. There is still a problem: how do you march onto the battlefield, inside sick cells? The weapon is the genome-editing machinery, and the most efficient vessel ever tested are lipid nanoparticles. With this approach, described in a study published in Nature Biotechnology last week, CRISPR has beaten its success record in adult animals, knocking out the target gene in about 80% of liver cells. Continue reading

Testing the future of beer

birraThe Daily Beast has misunderstood, unfortunately, and the rose-scented CRISPR beer does not exist yet. But researchers are hopeful to try it in pilot-scale in the near future. A team from the University of Leuven in Belgium has identified two genes that could be used to generate novel flavor profiles in alcoholic beverages. They are called TOR1 and FAS2 and work by increasing the production of phenylethyl acetate in yeast (Saccharomyces cerevisiae). CRISPR helped to swap the scented alleles into standard strains, which suddenly began producing more floral aromas. Continue reading

View CRISPR and beyond (from Nature Methods)

CRISPR is not just a tool for cutting DNA; it can do much more than that. Its key component, protein Cas9, can be accessorized with activators or repressors to modulate the transcription of target genes, and even with fluorescent proteins to visualize the architecture of the genome. “What’s been achieved so far could be just the tip of the iceberg,” according to this Nature Methods’s video. “When it comes to CRISPR’s potential, whatever comes next, it seems the CRISPR revolution is far from over.”

Zhang on tomorrow’s life sciences

830X320-fengzhangThe genome-editing pioneer ponders the future of life sciences in MIT Technology Review. Curiosity-driven research has unexpectedly led to transformative technologies such as CRISPR, writes Feng Zhang. CRISPR is also reciprocating, by broadening our ability to study the breadth of natural diversity. What an exciting time we live in.

 

Two big cheers for base editing

MUTATION

The rising star of base editing shadowed classic genome editing last week. I’m sure you heard about the ground-breaking papers respectively published by David Liu and Feng Zhang in Nature and Science. CRISPR enthusiasts have probably already enjoyed the piece by Jon Cohen on the new approach, i.e., the rearrangement of atoms in individual DNA letters to switch their identity without even cutting the DNA strands. But let’s take a look also at The Scientist, which runs two must-read articles about the details of the experiments. The first take-home message is the latest achievements are exciting, but base editors are not better than CRISPR, they’re just different. The second one, there is still room for improvement with base editing, and the best is yet to come.