Gene drives & the trolley dilemma

malaria kills

The trolley problem is a classic philosophical dilemma, and its variants have been used extensively to test moral intuitions. Scanning the brain of human subjects with functional MRI during task performance has proven useful to understand how emotion and reason interact when we ponder bioethical issues. It would be interesting to adopt those approaches to study the psychological barriers towards controversial innovations such as gene drives. Just imagine you alone are responsible for pressing a button and switching on gene drives in malaria-spreading mosquitoes. Someone is going to die, and you must decide whom to save. Continue reading

Cutting off Duchenne in dogs. How excited should we be

dogs-muscular-dystrophy

credit: Royal Veterinary College, University of London

“Exciting news! Our partner, Dr. Eric Olson and his team at Exonics published their research on increasing dystrophin restoration of 92% in the hearts of dogs. While they have a long way to go, their dramatic research gives hope to all families affected by Duchenne!”. This is how the patient advocacy group CureDuchenne announced the CRISPR breakthrough just published in Science. Continue reading

Another CRISPR havoc? That’s science, baby

keep-calm-and-sequence-dna

A paper published in Nature Biotechnology by Allan Bradley and colleagues from the Wellcome Sanger Institute in Hinxton, UK, shows that classical CRISPR editing can cause large rearrangements of DNA near the target site in actively dividing cells. We may think of it as the latest CRISPR alarm, but also as a demonstration of how biomedical research works. Firstly: no technology is perfect, but the best ones are perfectible. CRISPR belongs to this category because it is an extraordinarily versatile and fast-evolving biotech platform. When reading news like “CRISPR causes this or that problem,” the first question to ask is: which CRISPR variant are we talking about? Continue reading

CRISPR and the cancer link. Who said what?

41124064215_2984b6abeb_h

Credit: Ernesto del Aguila III, National Human Genome Research Institute, NIH

A pair of papers published in Nature Medicine have caused a stir about CRISPR-edited cells lacking a well-known tumor suppressor gene. STAT is doing an online chat next week to follow up the news. In the meantime, this is a sample of how the CRISPR community is commenting the story. Continue reading

From antisense to CRISPR. Q&A with Ed Wild

ed wild

Dr Ed Wild at the Vatican with co-discoverer of the HD gene – Nancy Wexler

Ed Wild of University College London is a leading scientist and the international coordinator (with Sarah Tabrizi) in a very promising trial using antisense oligonucleotide technology in Huntington patients. This is the interview he gave me before attending the Huntington’s Days 2018 meeting in Turin, Italy.  Continue reading

CRISPR futures. Q&A with Jennifer Doudna

Doudna, Jennifer

Credit: Keegan Houser/UC Berkeley

Interview given to Anna Meldolesi (Corriere della sera, 15 May 2018)

The CRISPR biomedical duel between China and the US has been called “Sputnik 2.0”. Is Europe being left behind?

JD: As with any disruptive technology, there is intense competition to lead. However, unlike the space race, the CRISPR research effort is global and more collaborative. We consistently see key advances in CRISPR technology shared through scientific papers, written and read by research teams around the world. This collective approach has helped to democratize the technology. However, differing regulations across countries may impact how we ultimately translate research into real-world applications that can benefit the most number of people with the most need. Researchers in Europe have made valuable contributions to the development and application of CRISPR and will continue to play a role in establishing global standards. Continue reading

China vs USA: who leads the CRISPR race?

China vs US

The first human CRISPR trial approved in the United States is finally recruiting the first patient. In the meantime trials have grown to a dozen in China, considering those revealed by the Wall Street Journal inquiry besides the NIH database (check also this npr article for further details). Over 80 Chinese patients are already receiving a CRISPR-based treatment, while US researchers cautiously plan to test the safety of their experimental therapy on a single subject, and, if everything goes right, two more patients will be treated a month later. Is the West losing its genome-editing edge to Beijing? Continue reading