Prime editing set to enter human trials

Credit: Microsoft/Bing

Recently David Liu announced that Prime Medicine will likely submit the first human trial application in 2024. The standard version of CRISPR uses an RNA guide to find the editing site in the genome. Prime editing, on the other hand, also uses the same RNA molecule to direct the correction, in short, to specify what to do as well as where to go.

This insight blossomed in Andrew Anzalone’s mind a few years ago during his PhD at Columbia University. The first practical demonstration came with a paper published in Nature in 2019 after joining the Liu’s Lab at the Broad Institute. Since then, this platform has been used in hundreds of experiments to fix all kinds of mutations in vitro and in animal models.

Meanwhile, the company co-founded by Anzalone and Liu has begun work on 18 treatments, the most advanced for chronic granulomatous disease. To learn more, from the eureka moment to the latest developments, we suggest listening to the Close to the Edge podcast and reading Alex Philippidis’ article in GEN.

Brilliant Minds: David Liu & Sammy Basso

The first is a CRISPR innovator (base editing and prime editing came out of his lab). The second has a genetic disease that causes him to age prematurely (progeria) and has taken his destiny into his own hands by becoming a biologist. They are each other’s inspiration and in this video they tell us why.

Would you buy a CRISPR salad from these men?

The company which developed the new vegetable (and is working on new varieties of cherries and berries) was founded by CRISPR top scientists David Liu, Keith Joung and Feng Zhang

By now it seems official. The first CRISPR plant to debut in the US market will not be a commodity for industry or intensive livestock farming, as was the case with classic GMOs in the 1990s. This time genetic innovation enters on tiptoe, with a food product designed for discerning consumers. A new type of salad, as nutrient-rich as a wild misticanza but without the bitter notes that usually relegate brassicas to foods to be eaten cooked (see here).

Continue reading

Next-Gen CRISPR – pasting whole genes without cutting

PASTE is a three-part CRISPR tool invented at the MIT McGovern Institute for Brain Research. It’s composed of a modified CRISPR-Cas9 (it’s called nickase because it nicks a single DNA strand instead of cutting both) and two effectors: RT stands for reverse transcriptase (just like in prime editing) while LSR means large serine recombinase.

This brand-new molecular machine writes the genome in three steps. Step 1: the nickase finds the desired site. Step 2: the reverse transcriptase inserts a landing pad. Step 3: the recombinase lands there and delivers its large DNA cargo. The aim is to replace whole genes, when fixing mutations is not enough (one example is cystic fibrosis). Here are the links to learn more:

Continue reading

Crispy salads are here!

Berkeley professor Patrick Hsu on twitter: “Delighted to try out the world’s first CRISPR-edited salad”

I must say that I’m a bit envious and eager to taste this kind of Brassica juncea with the “mustard bomb” mechanism prevented by knocking-out multiple copies of the gene responsible for the bitter taste.

Continue reading

The race of Liu’s CRISPR machines

From the base-editing idea first sketched out via email in 2013, to the invention of prime-editing in 2019. From the progeria mutation fixed in mice in 2021 to the upcoming clinical trial for coronary heart disease. The updated story of the most advanced CRISPR tools told by Harvard’s David Liu is not to be missed (here’s the link to the Life Itself conference organized by CNN).

Base-editing comes of age and more SCD news

Alexis Komor and Nicole Gaudelli developed based editing when they were postdoc in David Liu’s laboratory at Harvard. Credit: The CRISPR Journal

The first Investigational New Drug (IND) application for base-editing technology has been cleared by the Food and Drug Administration. BEAM-101, developed by Beam Therapeutics, is an ex vivo base-editing product candidate, meaning that it uses a modified form of CRISPR capable of making single base changes without double-stranded DNA cleavage.

Continue reading

CRISPR landmark trial: who said what?

Credit Intellia Therapeutics

Here you can read a selection of notable comments about the landmark paper on in vivo genome-editing published in the New England Journal of Medicine on 26 June. The trial, conducted in the UK and New Zealand, produced the first-ever clinical data supporting the safety and efficacy of intravenous infusion of a single-dose CRISPR treatment. The treatment, developed by two US-based companies (Intellia Therapeutics and Regeneron Pharmaceuticals) targets a rare and fatal condition called transthyretin amyloidosis.

Jennifer Doudna (CRISPR co-inventor and co-founder of Intellia): “It’s a critical first step in being able to inactivate, repair, or replace any gene that causes disease, anywhere in the body” (source Science).

Continue reading

Great progeria paper opens CRISPR new year

A paper published in Nature by CRISPR innovator David Liu and a giant in medical genetics, Francis Collins, raises great hopes for treating a rare, devastating pediatric disease causing premature-aging (Hutchinson-Gilford progeria syndrome). “The outcome is incredible,” according to gene-therapy researcher Guangping Gao. “Dance on the lab bench” amazing, according to editing pioneer Fyodor Urnov. Let’s be clear: the CRISPR variant called a base-editor has helped only progeria mice so far, but results are beyond anyone’s wildest expectations. One injection is enough to fix the single-letter mutation in several tissues, doubling mice’s lifespan. To learn more, see David Liu’s tweets and the NIH Director’s Blog.

Editing mitochondria

Click the links below to discover Ddda, the exceptional enzyme that allows mitochondrial editing, and celebrate curiosity-driven research.

The Nature paper by Joseph Mougous and David Liu: “A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing”

The news: “Scientists make precise gene edits to mitochondrial DNA for first time”

The news and views: “Mitochondrial genome editing gets precise”

The editorial: “Mitochondrial genome editing: another win for curiosity-driven research”