Inside the CRISPR saga

What’s unique about this book are the insights into the relationships between the main characters of the CRISPR saga. The loyal friendship linking Jennifer Doudna and George Church. The growing distrust between Doudna and Zhang. Doudna’s sorrow that she and Charpentier have drifted apart, personally as well as scientifically. The last point is indeed a melancholic note in the Nobel-ending tale. Why did their friendship fall apart?

Continue reading

CRISPR-based Covid tests: what’s going on?

Doudna’s creature (Mammoth Biosciences) and Zhang’s company (Sherlock Biosciences) are developing CRISPR-based coronavirus tests similar to a home pregnancy test: portable, cheap, fast, and simple. Both will be easily adapted to detect any new emerging virus. Both received emergency use authorizations in the US in the fall of 2020 and hope to enter the market by the end of 2021. According to this piece by Walter Isaacson, competition is hot but all the intellectual property questions have been put aside for common good.

CRISPR crops in the news

Credit Pairwise Plants

European scientists must wait for the EC to carry out targeted consultations with Member States and EU-level stakeholders. Then the Commission study on new genomic techniques will be delivered by 30 April 2021. In the meantime, the United States has decided to relax the rules for biotech crops.

Continue reading

CRISPR milestone: FDA approves first diagnostic test

May 7th 2020 will be remembered as a good day for CRISPR. Yesterday the first CRISPR/Cas-based test received Emergency Use Authorization from the U.S. Food and Drug Administration. The Sherlock SARS-CoV2 kit works by programming a CRISPR enzyme to detect the coronavirus genetic signature, providing results in about one hour. Quickly and cheaply indeed, as the materials for one test cost about $6.

Continue reading

Toward a CRISPR-based diagnostics for COVID-19

Do you remember Sherlock? The CRISPR-based platform was heralded in Science as a new generation of low cost diagnostic tests with single-base specificity, easy to use even when oubreaks occur in remote areas. The good news is that Feng Zhang and colleagues are sharing a research protocol, applicable to purified RNA, that may inform the development of a Sherlock test for COVID-19. For more information, visit the McGovern Institute website.

CasX: the smaller the crispier

cas treeTime will tell if it is going to become the preferred enzyme for genome editing or just another useful tool in the expanding CRISPR kit. But the future of CasX looks bright. It is much smaller than the nucleases that have provided a foundation for this technology. Being fewer than a thousand amino acids, it offers clear advantages for delivery in comparison with Cas9, that is over 1,300 Aa. Continue reading

Playing a three of CRISPR kind

three acesIt is Science but it could be mistaken for The CRISPR Journal. The latest issue indeed runs three papers by three CRISPR aces – David Liu, Jennifer Doudna, and Feng Zhang – about the cutting-edge fields of biological recorders and advanced diagnostic tests. Continue reading

Zhang on tomorrow’s life sciences

830X320-fengzhangThe genome-editing pioneer ponders the future of life sciences in MIT Technology Review. Curiosity-driven research has unexpectedly led to transformative technologies such as CRISPR, writes Feng Zhang. CRISPR is also reciprocating, by broadening our ability to study the breadth of natural diversity. What an exciting time we live in.

 

Two big cheers for base editing

MUTATION

The rising star of base editing shadowed classic genome editing last week. I’m sure you heard about the ground-breaking papers respectively published by David Liu and Feng Zhang in Nature and Science. CRISPR enthusiasts have probably already enjoyed the piece by Jon Cohen on the new approach, i.e., the rearrangement of atoms in individual DNA letters to switch their identity without even cutting the DNA strands. But let’s take a look also at The Scientist, which runs two must-read articles about the details of the experiments. The first take-home message is the latest achievements are exciting, but base editors are not better than CRISPR, they’re just different. The second one, there is still room for improvement with base editing, and the best is yet to come.