CRISPR aims straight for the heart

Photo credit Singularity Hub

The latest challenge is protecting damaged tissue immediately after a heart attack with the help of base editing (see the paper published in Science by Eric Olson’s group at the University of Texas Southwestern Medical Center). But there are hundreds of devastating diseases that affect the heart or other muscles and are caused by mutations that could be fixed by CRISPR-based tools (see this paper in Science Trsnslational Medicine for example). From Duchenne dystrophy to cardiomyopathies, some preliminary results are very encouraging.
Learn more reading the article on the Science paper published by El Pais and watching this video with Olson explaining his studies, especially on Duchenne muscular dystrophy.

The race of Liu’s CRISPR machines

From the base-editing idea first sketched out via email in 2013, to the invention of prime-editing in 2019. From the progeria mutation fixed in mice in 2021 to the upcoming clinical trial for coronary heart disease. The updated story of the most advanced CRISPR tools told by Harvard’s David Liu is not to be missed (here’s the link to the Life Itself conference organized by CNN).

Base-editing comes of age and more SCD news

Alexis Komor and Nicole Gaudelli developed based editing when they were postdoc in David Liu’s laboratory at Harvard. Credit: The CRISPR Journal

The first Investigational New Drug (IND) application for base-editing technology has been cleared by the Food and Drug Administration. BEAM-101, developed by Beam Therapeutics, is an ex vivo base-editing product candidate, meaning that it uses a modified form of CRISPR capable of making single base changes without double-stranded DNA cleavage.

Continue reading

Great progeria paper opens CRISPR new year

A paper published in Nature by CRISPR innovator David Liu and a giant in medical genetics, Francis Collins, raises great hopes for treating a rare, devastating pediatric disease causing premature-aging (Hutchinson-Gilford progeria syndrome). “The outcome is incredible,” according to gene-therapy researcher Guangping Gao. “Dance on the lab bench” amazing, according to editing pioneer Fyodor Urnov. Let’s be clear: the CRISPR variant called a base-editor has helped only progeria mice so far, but results are beyond anyone’s wildest expectations. One injection is enough to fix the single-letter mutation in several tissues, doubling mice’s lifespan. To learn more, see David Liu’s tweets and the NIH Director’s Blog.

Editing mitochondria

Click the links below to discover Ddda, the exceptional enzyme that allows mitochondrial editing, and celebrate curiosity-driven research.

The Nature paper by Joseph Mougous and David Liu: “A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing”

The news: “Scientists make precise gene edits to mitochondrial DNA for first time”

The news and views: “Mitochondrial genome editing gets precise”

The editorial: “Mitochondrial genome editing: another win for curiosity-driven research”