Duchenne: a farewell and some timid hope

The death of pioneer patient Terry Horgan is a warning about the risks of viral vectors but the focus is now on the first gene therapy being approved in the US

On the chellenging frontier of advanced therapies, every death is a pain from which everything possible must be learned. The inauspicious outcome of the individual treatment for Duchenne muscular dystrophy developed by the non-profit Cure Rare Disease for Terry Horgan, and tested solely on this American boy, can teach little about the specifics of CRISPR. Indeed, the death occurred before the molecular editing machine could get into action. But the information on the case, circulated in May on a preprint archive awaiting peer-reviewed, is nonetheless a valuable contribution to the advancement of knowledge in an area where science has no intention of giving up.

Continue reading

The lesson of Terry, the pioneer patient who didn’t make it

Terry and Richard Horgan (Courtesy of Cure Rare Disease)

He was the first patient to get a CRISPR therapy for muscular dystrophy. The first to receive a CRISPR treatment made specifically for him. And also the first to try a CRISPR approach that did not aim to change a DNA sequence but only its expression (epigenetic editing). Six months after Terry Horgan’s passing, his brother Richard disclosed the first information on the cause of death.

Continue reading

CRISPR aims straight for the heart

Photo credit Singularity Hub

The latest challenge is protecting damaged tissue immediately after a heart attack with the help of base editing (see the paper published in Science by Eric Olson’s group at the University of Texas Southwestern Medical Center). But there are hundreds of devastating diseases that affect the heart or other muscles and are caused by mutations that could be fixed by CRISPR-based tools (see this paper in Science Trsnslational Medicine for example). From Duchenne dystrophy to cardiomyopathies, some preliminary results are very encouraging.
Learn more reading the article on the Science paper published by El Pais and watching this video with Olson explaining his studies, especially on Duchenne muscular dystrophy.

Editing Duchenne. Where are we now?

Duchenne CRISPR

© STEVE GRAEPEL (“Infographic: Treating Duchenne Muscular Dystrophy with CRISPR“, The Scientist, September 2018)

In 2013, multiple labs sharpened CRISPR molecular scissors against Duchenne muscular dystrophy, using cells from patients in vitro. In 2016, the dystrophin gene was successfully edited in mice. Then last summer, Eric Olson did it in dogs . Where are we now in the struggle to cure this severe type of myopathy afflicting 300,000 boys in the world? What is still needed to move into a clinical trial? Continue reading

Cutting off Duchenne in dogs. How excited should we be

dogs-muscular-dystrophy

credit: Royal Veterinary College, University of London

“Exciting news! Our partner, Dr. Eric Olson and his team at Exonics published their research on increasing dystrophin restoration of 92% in the hearts of dogs. While they have a long way to go, their dramatic research gives hope to all families affected by Duchenne!”. This is how the patient advocacy group CureDuchenne announced the CRISPR breakthrough just published in Science. Continue reading

CRISPR latest edition

crispr-latest-edition[8047]There is hardly any day without CRISPR news. February starts with researchers correcting abnormalities associated with Duchenne muscular dystrophy (Science Advances) and performing allele-specific editing in blind mice (bioRxiv, forthcoming in The CRISPR Journal). A repechage from January also: how to get pluripotent stem cells by CRISPRing just one gene (Cell Stem Cell).

Epigenetic editing hits hat-trick

editing epigenetico Cell

Reversing three genetic diseases in the animal model without even changing a single DNA letter. A Salk Institute team did it by bringing together two of biomedicine’s hottest trends. One is the CRISPR technique, which edits target genes through a programmable molecular machine named Cas9. The other is epigenetics, i.e., the study of chemical modifications that switch genes on and off without altering their sequence. It’s called epigenetic editing, because corrections are precise as in manuscript revision and occur at a level that is over (epi- in Greek) genetics. Continue reading