CRISPR aims straight for the heart

Photo credit Singularity Hub

The latest challenge is protecting damaged tissue immediately after a heart attack with the help of base editing (see the paper published in Science by Eric Olson’s group at the University of Texas Southwestern Medical Center). But there are hundreds of devastating diseases that affect the heart or other muscles and are caused by mutations that could be fixed by CRISPR-based tools (see this paper in Science Trsnslational Medicine for example). From Duchenne dystrophy to cardiomyopathies, some preliminary results are very encouraging.
Learn more reading the article on the Science paper published by El Pais and watching this video with Olson explaining his studies, especially on Duchenne muscular dystrophy.

Editing Duchenne. Where are we now?

Duchenne CRISPR

© STEVE GRAEPEL (“Infographic: Treating Duchenne Muscular Dystrophy with CRISPR“, The Scientist, September 2018)

In 2013, multiple labs sharpened CRISPR molecular scissors against Duchenne muscular dystrophy, using cells from patients in vitro. In 2016, the dystrophin gene was successfully edited in mice. Then last summer, Eric Olson did it in dogs . Where are we now in the struggle to cure this severe type of myopathy afflicting 300,000 boys in the world? What is still needed to move into a clinical trial? Continue reading

Cutting off Duchenne in dogs. How excited should we be

dogs-muscular-dystrophy

credit: Royal Veterinary College, University of London

“Exciting news! Our partner, Dr. Eric Olson and his team at Exonics published their research on increasing dystrophin restoration of 92% in the hearts of dogs. While they have a long way to go, their dramatic research gives hope to all families affected by Duchenne!”. This is how the patient advocacy group CureDuchenne announced the CRISPR breakthrough just published in Science. Continue reading

CRISPR latest edition

crispr-latest-edition[8047]There is hardly any day without CRISPR news. February starts with researchers correcting abnormalities associated with Duchenne muscular dystrophy (Science Advances) and performing allele-specific editing in blind mice (bioRxiv, forthcoming in The CRISPR Journal). A repechage from January also: how to get pluripotent stem cells by CRISPRing just one gene (Cell Stem Cell).

Epigenetic editing hits hat-trick

editing epigenetico Cell

Reversing three genetic diseases in the animal model without even changing a single DNA letter. A Salk Institute team did it by bringing together two of biomedicine’s hottest trends. One is the CRISPR technique, which edits target genes through a programmable molecular machine named Cas9. The other is epigenetics, i.e., the study of chemical modifications that switch genes on and off without altering their sequence. It’s called epigenetic editing, because corrections are precise as in manuscript revision and occur at a level that is over (epi- in Greek) genetics. Continue reading