Gene drives: the experiment goes social

harvard-mag-pete-ryanChoose a word to fill the gap in the sentence. “Gene drives are an ambitious experiment in …”. Genetics? Ecology? Evolution? Obviously, gene drives are all this and more. They may also represent a significant social experiment in risk communication, public engagement, participatory processes. Potential applications of this technology include controlling the transmission of vector-borne diseases and eliminating invasive species from sensitive ecosystems. We do not yet know if these genetic elements, designed to foster the preferential inheritance of a gene of interest with CRISPR’s help, will work in field trials as hoped. To find out, a green light to test this technology out of the labs will have to be negotiated with the public, stakeholders, regulators, and governments of affected countries. A first step in this direction was taken last week with the commitment to respect shared guiding principles in gene drive research and communication published in Science by the technology main sponsors and supporters. Signatory organizations are scattered around the world, from the US to India, with the Bill & Melinda Gates Foundation at the forefront with its Target Malaria project. Continue reading

CRISPR mosquitoes come to town

target malaria open days

The Italian city of Terni is now a spot on the map of cutting-edge research due to its new genetic-ecology lab,  which is getting involved in the Target Malaria project funded by the Bill & Melinda Gates Foundation. For a couple of days, citizens are allowed to visit the facility which is part of the Genomics, Genetics and Biology Innovation Pole. That’s an example of real public engagement: everybody can talk to researchers and watch videos, but also enter the climatic rooms simulating tropical conditions and see the cages for the insects which are the tiny heroes and the target of a daring scientific challenge. The mission here in Terni indeed is to investigate if the idea of controlling genetically malaria, by introducing self-destroying Anopheles gambiae into wild mosquitoes populations, is set to work in real world situations. Continue reading