CRISPR biofortified foods

Nutritional improvement of crops is one of the fields set to gain from the advent of genome editing. Let’s take vitamin D3. People suffering from its deficiency in the world number about one billion. Plants do not contain it naturally, but some of them (solanaceae) are able to produce its precursor (cholesterol) within a biosynthetic pathway that leads to the synthesis of certain secondary metabolites (glycoalkaloids). Luckily, they can be induced to accumulate provitamin D3 by switching off the gene responsible for this reaction.

Continue reading

Flowering with CRISPR

Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs

FT (Flowering Locus T) is a small protein that helps plants know when to flower. Now it also allows geneticists to create heritable gene edits in the shoot apical meristem. The trick is a guide RNA augmented with an FT sequence that promotes cell-to-cell mobility. The result is a new approach to gain access to the germline.

Continue reading

Neutralizing cryptic mutations in plant breeding

We talk of cryptic mutations when genes are changed in a way that remains hidden until they interact with other mutations. As a result, combining beneficial traits can have negative consequences hindering agricultural production (watch this video from Cold Spring Harbor Laboratory on unexpected negative interactions). Classic breeders have been dealing with this problem for decades, but researchers from CSHL are finally working on a solution suitable for the genomic era. Zach Lippman and colleagues have studied one infamous cryptic mutation affecting a tomato variety developed by the Campbell Soup Company in the 1960s and discuss an anti-negative-interaction strategy for the future. Please see their paper in Nature Plants and watch the video below offering a cautionary tale for crop gene editing.